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Abstract 

This study examines several observational aspects of land-atmosphere coupling on daily average 

time scales during warm seasons of the years 1997 to 2008 at the Department of Energy 

Atmospheric Radiation Measurement Program’s Southern Great Plains (SGP) Central Facility 

site near Lamont, Oklahoma. Characteristics of the local land-atmosphere coupling are inferred 

by analyzing the covariability of selected land and atmospheric variables that include 

precipitation and soil moisture, surface air temperature, relative humidity, radiant and turbulent 

fluxes, as well as low-level cloud base height and fractional coverage. For both the energetic and 

hydrological aspects of this coupling, it is found that large-scale atmospheric forcings 

predominate, with local feedbacks of the land on the atmosphere being comparatively small 

much of the time. The weak land feedbacks are manifested by 1) the inability of soil moisture to 

comprehensively impact the coupled land-atmosphere energetics, and 2) the limited recycling of 

local surface moisture under conditions where most of the rainfall derives from convective cells 

that originate at remote locations. There is some evidence, nevertheless, of the local land 

feedback becoming stronger as the soil dries out in the aftermath of precipitation events, or on 

days when the local boundary-layer clouds are influenced by thermal updrafts known to be 

associated with convection originating at the surface. Potential implications of these results for 

climate-model representation of regional land-atmosphere coupling also are discussed. 

 

 

 

 



2 

 

1.  Introduction 

Land-atmosphere coupling, as manifested in both models and observations, has received 

increasing scientific attention during the past decade (e.g. see the review by Seneviratne et al. 

[2010]). Pioneering studies of this type were initially conducted with individual climate models 

(e.g. see the summary by Dirmeyer et al. [2012] ), but broader scientific attention was sparked by 

the first Global Land-Atmosphere Coupling Experiment (GLACE-1) performed by twelve 

general circulation models (GCMs) [Koster et al., 2004, 2006]. The participating models 

individually displayed diverse behaviors in their coupling of simulated soil moisture with surface 

air temperature, and especially precipitation, over many regions during boreal summer [Guo et 

al., 2006]. Nonetheless, several semi-arid transitional regions characterized by persistent soil 

moisture stress were identified, where the strength of this land-atmosphere coupling was 

relatively large in a multimodel, ensemble-mean sense. The implication was that seasonal 

prediction of precipitation, in particular, could be improved from knowledge of soil moisture 

near these regional “hot spots”, one of which was located in the central U.S.   

Initial diagnosis of land-atmosphere coupling in the GLACE-1 models focused mainly on 

the response of terrestrial turbulent fluxes (especially evapotranspiration) to soil-moisture 

anomalies. Subsequent analysis (e.g. Guo et al. [2006], Santanello et al. [2011a]) emphasized 

that substantial soil moisture-precipitation feedback also requires a strong linkage between the 

surface fluxes and precipitation that is usually mediated by locally triggered convection.  

To estimate large-scale surface flux-convection linkages, Findell et al. [2011], Ferguson and 

Wood [2011], and Taylor et al. [2012] have followed alternative approaches, employing North 

American Regional Reanalysis (NARR) moist products that reflect assimilation of observed 

precipitation (Findell et al. [2011]), or various satellite-derived products (Ferguson and Wood 

[2011] and Taylor et al. [2012]). The Findell et al. [2011] study also differed in scope, in that it 
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considered only the relationship between surface evaporation and convective potential, whereas 

Ferguson and Wood [2011] and Taylor et al. [2012] also accounted for  effects of satellite-

estimated soil moisture.  While not in close agreement with one another, results of these analyses 

implied that the central U.S. is not a “hot spot” for locally initiated convective precipitation 

compared with other parts of North America (especially the southeast U.S.).  In addition, Taylor 

et al. [2012] questioned whether coarse-resolution climate models were inherently capable of 

properly representing surface-induced mesoscale flows thought to important in triggering 

convection over land.  An extensive satellite-based study conducted by Ferguson et al. [2012] 

also suggested that models of various kinds (e.g. off-line land models forced by observations as 

well as global and NARR atmospheric reanalysis models coupled to land models) generally 

overestimate the coupling strength of soil moisture, surface evaporative flux, and boundary-layer 

lifting condensation level (LCL).  Nevertheless, Ferguson et al. [2012] confirmed that the 

GLACE-identified, semi-arid transitional zones were indeed sites of relatively strong land-

atmosphere coupling. 

While such studies provide useful estimates of large-scale variations in land-atmosphere 

coupling, they remain subject to the limitations of relatively coarse-scale remote sensing and 

model-based reanalysis products.  To complement these large-scale investigations, it is desirable 

to exploit in-situ observations at locations where these are available. For example, the U.S. 

Department of Energy (USDOE) Southern Great Plains (SGP) network of field sites, are 

arranged  in a roughly 3.5x3.5-degree area about a Central Facility (CF) that is  located (at 36.6 

N, 97.5 W) near Lamont, Oklahoma. Here extensive high-frequency observing systems have 

operated continuously since the mid-1990s under the USDOE Atmospheric Radiation 

Measurement (ARM) Program [Ackerman and Stokes, 2003; Mather and Voyles, 2013].   
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The ARM SGP data streams thus afford unique opportunities for conducting analyses of 

local land-atmosphere interactions in this central-U.S. region that are of particular scientific 

interest. In the aftermath of the GLACE-1 modeling experiment, several studies of this type have 

been undertaken. Dirmeyer et al. [2006] used ARM SGP data (among others) to compare soil 

moisture-atmosphere coupling in the GLACE-1 climate models with equivalent observables. 

They highlighted substantial deficiencies in GLACE model simulations of the local observed 

relationships among soil moisture, surface turbulent fluxes, and precipitation.  Lamb et al. [2012] 

combined SGP field data in May-June periods during four years with North American Regional 

Reanalysis (NARR) atmospheric wind and moisture products in order to study the components 

of the regional moisture budget centered on SGP.  They estimated the daily average moisture 

recycling fraction for the SGP region to be small, ranging only between 0.07-0.28.   Most 

recently, Ruiz-Barradas and Nigam [2013] employed pentadal ARM SGP observations 

supplementing NARR products to analyze the relative roles played by horizontal and vertical 

moisture transports in determining regional precipitation variability. They found that horizontal 

moisture transports dominated, consistent with a relatively small amount of local precipitation 

recycling. This result confirmed their earlier assertion that GLACE-vintage models exhibited 

overly strong vertical moisture transports in compensating for too weak horizontal transports 

over the central U.S.[Ruiz-Barradas and Nigam, 2006]. 

Taken together, these SGP regional studies would appear to call into question the GLACE-1 

model ensemble mean result implying the presence of a tight land-atmosphere hydrological 

coupling over the central U.S.  It thus is desirable to bring additional in-situ observational data to 

bear on this problem, and to consider their consistency with previous SGP regional studies of this 

type. The recent release of ARM Best Estimate (ARMBE) quality-controlled data sets provides 
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such an opportunity for more detailed studies of land-atmosphere coupling in this region [Xie et 

al., 2010]. At the SGP CF site, for example, the ARMBE data comprise measurements of many 

diverse surface and atmospheric variables taken at hourly intervals over a 12-year period.  

It is the goal of the present study to exploit the ARMBE data for a more comprehensive 

investigation of land-atmosphere coupling (including interactions among soil moisture, surface 

radiative and turbulent fluxes, low-level clouds, and precipitation), and over a longer period than 

has previously been attempted at the SGP CF site. Moreover, the wide range of available 

ARMBE-observed variables permits quantification of the relative strengths of feedbacks between 

land and atmosphere. 

The analysis approach is mainly inspired by the perspectives of Alan Betts [e.g. Betts et al., 

1996, Betts, 2004 and Betts, 2009] which have influenced many of the aforementioned land-

atmosphere studies. In Betts’ framework, the atmosphere forces the land via radiant fluxes and 

precipitation that are modulated by clouds, while the land feeds back on the atmosphere via 

radiant and turbulent fluxes that are modulated by soil moisture. These interactions usually are 

depicted as scatter plots expressing the covariation of selected land surface and atmospheric 

variables.  

This study thus seeks to identify multiple examples of the covariation of diverse observed 

surface and lower-atmospheric variables that are indicative of several aspects of the local land-

atmosphere coupling particular to the SGP CF site. The analysis focuses on daily average 

quantities (constructed from hourly ARMBE observations) for the May-August warm seasons of 

the years 1997-2008, when land-atmosphere coupling is likely to be strongest. The ARMBE data 

are augmented, as needed, by a few auxiliary ARM data sets, and this study is also informed by 
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investigations of ARM-observed SGP clouds and precipitation conducted by Zhang and Klein 

[2010, 2013].  

The ARMBE data characteristics and the analysis methodology are discussed further in 

Section 2. Details of the observed SGP land-atmosphere energetic and hydrological interactions 

are presented in Sections 3 and 4, respectively. The implications of the study are elaborated in 

Section 5, and ideas for future investigations of land-atmosphere coupling that would combine 

observations with model experiments are offered in a concluding Section 6. 

 

2. Data Characteristics and Analysis Approach 

The ARM data archive holdings are vast and exceptionally diverse in terms of observed 

variables, instruments, measurement frequencies; it thus can be challenging for the uninitiated 

user to efficiently access relevant data. To make these data more accessible to climate model 

developers and diagnosticians in particular, ARM Best Estimate (ARMBE) data sets have been 

assembled [Xie et al., 2010]. The ARMBE data at SGP are presently only provided for the CF 

site. These data consist of hourly samples over the course of multiple years, presently from 1997 

to 2008 for most variables. (Less comprehensive data measured at other ARM sites such as those 

on the North Slope of Alaska and at several locations in the Western Equatorial Pacific also are 

available over shorter time periods.)  

At SGP CF, the ARMBE data include vertical soundings of state variables, a variety of 

cloud characteristics (e.g. vertical cloud fraction and total cloud cover, liquid water path, etc.), 

surface downward and upward radiant fluxes, sensible and latent heat fluxes, precipitable water, 

and surface meteorology such as winds, temperature, relative humidity. For the current study, 

however, only a subset of the available ARMBE variables are considered, while several 

additional quantities are obtained from other ARM data holdings (see Table 1). Rough estimates 
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of the respective instrumental root-mean-square measurement error (RMSE), gleaned from the 

cited references in Table 1, also are listed. For instance, the error in measuring the surface 

sensible heat flux is larger than that for the surface radiant fluxes, due to the propagation of 

errors from measurements of the net surface radiation, wind, surface temperature, relative 

humidity, and soil moisture that are required for estimation of this flux. 

In the results to be described in Sections 3 and 4, the correlation between selected pairs of 

land surface and atmospheric variables during the May-August warm seasons are displayed as 

scatter plots, reflecting diverse aspects of the land-atmosphere coupling. Following Betts’ 

emphasis, the focus of the present study is on daily average quantities, which are computed from 

hourly data between the hours of 0 Z to 23 Z, or roughly from local early evening to late 

afternoon of the following day. For many variables, the daily averages appear to be quite 

insensitive to the choice of temporal endpoints but, for physical reasons, the averaging of certain 

variables in Table 1 (the surface shortwave fluxes SWdn, SWdn clr, SWup and albedos, as well as 

precipitation and the cloud base level CBL, for selected conditions) is done only over daytime 

hours from 12 Z to 23 Z.  

Because of intermittent instrument failures, some hourly data were missing from the 

ARMBE and ancillary products, and so the daily averaging algorithm needed to take such 

missing values  into account. When an entire day of observations was missing for a variable, no 

daily average was computed. For those time intervals where M < 24 hourly samples per day were 

available for a given variable, the M samples were summed, and the resulting value was then 

divided by M to yield a pseudo-daily average. While some sampling bias may have been 

introduced in such cases, this was viewed as a preferable to completely disregarding days with 

only a few hours of missing data. (Most daily averages included at least 16 hourly samples.)  
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To assess the relative coherence of different aspects of land-atmosphere coupling, a 

quantitative measure of the coherence of the covariation of variables y and x, such as the 

temporal correlation coefficient, is needed: 

      R = <x’y’>/(σxσy)     (1) 

Here x’ and y’ signify the departures of each sampled variable from its multi-year statistical 

mean (with their multi- year average product denoted by the angle brackets), while σx and σy   are 

the corresponding standard deviations.   

In order to assess the statistical significance of R, the number of independent samples N of   

y versus x must be estimated, taking account of missing data. There are a maximum total of 1476 

daily average samples in the entire 1997-2008 time series but, for certain variables with 

considerable missing data (e.g. the surface turbulent fluxes H and LE), only about 1100 daily 

averages enter into the calculation of correlation R. However, even such reduced numbers of 

samples are serially correlated, and hence are not statistically independent. If it is assumed 

[following Dirmeyer et al, 2012] that only one in every five daily averages can be treated as 

statistically independent, then there are approximately N = 220 independent samples in a time 

series of 1100 daily averages. Applying a standard test for the statistical significance of a 

correlation R resulting from N = 220 independent samples [e.g. Bulmer, 1979], |R| > 0.20 can 

conservatively be regarded as statistically significant at a 99-% confidence level. (Hereafter, a 

99-% confidence level applies to all bivariate correlations described as “statistically 

significant”, unless explicitly stated otherwise.)   It should be kept in mind, of course, that a 

statistically significant correlation does not necessarily imply the existence of a causal 

relationship [e.g. Orlowsky and Seneviratne, 2010]. 
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Because the R statistic can be sensitive to mismatches in the observed ranges of the x and y 

variables, Dirmeyer [2011] recommends use of a supplemental “sensitivity index” I defined as  

      I = σxγ     (2) 

where γ is the slope of the least-squares regression line calculated from the scatter plot of y vs. x. 

I thus measures the magnitude of the average variation in y for a one-sigma variation in x. Since I 

takes on the units of y, this metric is most useful for comparing the sensitivities of different y 

variables, which are expressed in the same units,  to variations in a common x variable (e.g. see 

Table 2). Values of both R and I thus are listed in the scatter plots that are shown.   

3. Atmosphere-Land Energy Interactions Mediated by Clouds 

This section presents salient aspects of land-atmosphere energetics. The approach involves 

considering relationships among the radiant fluxes and clouds, and then examining the response 

of the land surface to the radiant forcings, as evinced by the surface turbulent fluxes. 

3.1 Surface Radiant Fluxes 

For given surface downward and upward short-wave fluxes SWdwn  and SWup , the net 

absorbed short-wave radiation at the surface is 

SWnet  = SWdn  -  SWup  = (1 - αs ) SWdn       (3) 

where the surface albedo αs  is defined as the ratio SWup /SWdn . The slope γ of the least-squares 

regression line of  1997-2008 May-August hourly values of SWup  vs SWdn  (figure not shown) 

provides an estimated surface albedo αs of approximately 0.19. The correlation of hourly SWup 

vs SWdn is very high (R = 0.99), as is to be expected on physical grounds. The sensitivity index I, 

calculated as the product of the regression slope and the standard deviation of independent 

variable SWdn      (σx = 331.99), is correspondingly large (I = 64.64).   
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For clear-sky (cloudless) conditions, the net surface short-wave radiation SWnet  achieves a 

maximum value of (1 - αs )SWdn clr . Here SWdn clr  is equivalent to the diurnal top-of-atmosphere 

downward short-wave insolation SWdn TOA  that is attenuated only by absorbing gases and 

aerosols in the atmospheric column over the SGP Central Facility.  Observationally based hourly 

estimates of SWdn clr   after Long and Shi [2006] also are accessible from the ARM data archive 

for the years 1997-2008. 

Most of the time, of course, the surface downward short-wave flux is less than its clear-sky 

value, due to reflection or absorption by clouds. To quantify their bulk radiant effects, it is useful 

to define an effective short-wave cloud albedo αc following Betts [2004, 2009]: 

αc  = (SWdn clr – SWdn)/ SWdn clr    (4) 

The net short-wave radiation absorbed at the surface under cloudy conditions then can be 

expressed as 

SWnet  = (1 - αc ) (1 - αs ) SWdn clr   (5) 

During the warm season at SGP, αs  is nearly constant and SWdn clr  changes only slowly, so 

(5) implies that SWnet  will decrease quasi-linearly with increasing αc. This is mostly what is 

observed, but with outliers occurring, especially for values of αc less than about  0.4 (Figure 1a). 

The daily-average net total (net short-wave + net long-wave) radiant flux Rnet varies similarly, 

although less coherently, with αc (Figure 1b). The correlation coefficient is correspondingly 

reduced in absolute value (R = -0.55 ) from that in Figure 1a (R = -0.65), and the sensitivity 

coefficients (I = -54.17  and -37.36, respectively) change in a roughly consistent way. 
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The surface net longwave radiative flux LWnet  = LWdn – LWup  also plays an important role 

in the land-atmosphere energetic coupling.  While both  LWdn  and LWup  are temperature-

sensitive, LWnet  on daily-mean timescales also is strongly influenced by relative humidity and 

cloud cover, due to substantial vertical coupling of the atmosphere’s diurnal temperature and 

moisture structure [Betts, 2009]. For instance, the highly positive correlations of the net surface 

longwave flux  LWnet  with αc , and with the surface relative humidity RH, are shown in Figure 2.  

(The positive correlation of LWnet with αc seen in Figure 2a is obscured in the analogous plot of 

net surface radiation Rnet  vs αc  shown in Figure 1b, since SWnet  predominates over LWnet  in its 

contribution to Rnet .)   

RH also covaries strongly with the effective shortwave cloud albedo αc (R = 0.61,  I = 0.13, 

figure not shown), since atmospheric relative humidity at cloud level is likely to be correlated 

somewhat, on daily-mean time scales, with its value at the surface. This relationship implies that 

the surface moisture might impact cloud horizontal extent or vertical thickness and, by extension, 

the surface shortwave energetics. Of course, RH  is not solely a function of local surface 

conditions, but is also greatly influenced by moisture advection (e.g. from the Gulf of Mexico) 

on many warm-season days at the SGP site [Zhang and Klein, 2010]. 

3.2 Surface Turbulent Fluxes 

In addition to the net total radiation Rnet, the surface energy budget includes turbulent fluxes 

of latent and sensible heat LE  and H, as well as the residual ground heat flux G which impacts 

the soil heat storage: 

Rnet = LE + H + G    (6) 
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Like Rnet  (Figure 1b), LE and H both vary inversely with effective cloud albedo αc  (e.g. see 

the scatter plot for L in Figure 3a); but at SGP, LE covaries more strongly with αc  (R = -0.38, I = 

-22.13 ) than does H (R = -0.29, I = -10.35, figure not shown). For the daily average values of 

interest in this study, G is usually small relative to other components in (6), so that Rnet  is 

approximately balanced by the sum of the turbulent fluxes:  

     Rnet ∼ LE + H     (7) 

For a given value of Rnet , LE and H thus display a rough “zero-sum”  relationship with one 

another, and the correlation of H with (LE - Rnet ) is thus found to be relatively large in absolute 

value (R = -0.82 in Figure 3b). Where there is still substantial scatter about the regression line in 

Figure 3b, this signifies either that the ground flux G is sometimes sizeable, or that 

measurements of radiative and turbulent fluxes by different instruments exhibit perceptible 

errors. 

Because the surface radiant and turbulent fluxes are expressed in the same units (W m-2)  

their sensitivity indices I with respect to the effective cloud albedo αc may be directly compared 

(Table 2). The index I imparts somewhat different information than does the correlation 

coefficient R, in that I  is proportional to the slope of the regression line of variable y vs. x 

(change in y for a one-sigma change in x--cf. equation 2), while R is a measure of their 

coherence (dependent on the amount of scatter about the regression line). For example, the 

surface net shortwave SWnet  and net total radiation Rnet are seen to be considerably more 

sensitive to changes in effective cloud albedo αc  (I = -54.17 and -37.76, respectively) than is the 

net longwave flux LWnet  ( I = 14.88) even though its correlation with αc  is relatively large    (R = 

0.71).  The turbulent fluxes LE and H also are found to be relatively insensitive to changes in 
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effective cloud albedo (I = -22.13 and -10.35, respectively), presumably because they are also 

impacted by surface properties, whose effects are next considered. 

4. Atmosphere-Land Interactions Mediated by Soil Moisture  

Aspects of atmosphere-land coupling evinced by related surface and lower-atmospheric 

moist processes are next considered. These include interactions among precipitation, soil 

moisture, evapotranspiration, relative humidity, and boundary-layer clouds at the SGP CF site. 

4.1 Precipitation, Soil Moisture, and Evapotranspiration 

Analysis of moist land-atmosphere processes properly begins with the principal hydrological 

forcing, the precipitation rate P. In contrast to the surface radiant fluxes, P is episodic in its 

forcing impact, as seen in the time series of the precipitation rate vs. the estimated moisture 

contained in the highly interactive top 10 cm of the underlying soil column (Figure 4) during the 

relatively dry 2006 (Figure 4a) versus wet 2007 (Figure 4b) warm seasons [Dong et al., 2011]. 

The 10-cm soil moisture values are estimated from the Soil Water Atmospheric Transfer System 

(SWATS) data (averaged over the closely spaced east and west soil profiles at the SGP CF) that 

are available from the ARM archive [Schneider et al., 2003; Bond, 2005]. Each precipitation 

event produces a closely following spike in soil moisture, and subsequent gradual evaporative 

drying of the soil, in the absence of additional precipitation.  

When soil moisture exceeds a local critical value Wc , the surface evaporation E 

approximates the potential evaporation Ep associated with a fully wetted surface, and E is then 

determined mainly by the net surface radiation Rnet , rather than by W.  At the other extreme, 

when W falls below the vegetation wilting level Wwilt,  E is approximately 0. In the moisture-

limited range where Wwilt < W < Wc , E increases with the local soil moisture W, but also depends 
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in a complex way on the hydraulic properties of the soil, the biophysics of the local vegetation, 

and the lower atmosphere’s aerodynamic resistance and humidity saturation deficit [Seneviratne 

et al. 2010]. 

Partly because of the complexity inherent in E, it is useful to define a dimensionless surface 

evaporative fraction EF that expresses the partitioning of the latent heat flux LE and sensible 

heat flux H at the surface [Betts 2004, 2009]:  

EF = LE/(LE + H)     (8) 

EF tends toward a local minimum value when the Bowen ratio B = H/L is relatively large, and 

toward a local maximum when B is small: 

EF = 1/(1 + B)     (9) 

At the SGP CF site, the observed daily-average EF (calculated from hourly observations of LE 

and H) ranges approximately between 0.2 and 0.9.  Thus B seldom attains values characteristic of 

either very dry (B > 4) or very wet (B < 0.1) soils [cf. Sellers, 1969], implying that W at the CF 

site mostly varies over a moisture-limited range that is characteristic of a semi-arid transition 

zone. 

To explore relationships of soil moisture with EF and other surface and low-atmosphere 

variables, it is also useful to define a site-specific soil moisture index [Betts 2004, 2009]:   

SMI = (W – Wmin) / (Wmax – Wmin)   (10)             

Here Wmax and Wmin are the multi-year (1997-2008) maximum and minimum hourly values of 

locally observed soil moisture [cf. Schneider et al. 2003].  For this study, an index for soil 
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moisture at a depth of 10 cm (denoted SMI10cm) is calculated as a sensitive indicator of day-to-

day soil moisture fluctuations. The corresponding Wmax and Wmin values are approximately 35 

and  25  kg m-2 , respectively.  

 The covariation of daily-average EF with  SMI10cm at the SGP CF is shown in Figure 5a. 

The slope of the regression line is positive, confirming that moisture-limited soil conditions 

generally apply [e.g. Tueling et al., 2009; Dirmeyer, 2011]. The correlation coefficient and 

sensitivity index are found to be R = 0.48 and I = 0.06, respectively. A bimodality in the 

distribution of SMI10cm samples also is evident in Figure 5 (and is inferable from Figure 4), with 

more incidences of drier SMI10cm < 0.2 or wetter SMI10cm  > 0.8 (some 580 or 260 samples, 

respectively, out of a total of about 1400 data points ) than at intermediate values.  

In light of the GLACE-1 model experiments, it is pertinent to consider whether substantial 

amounts of precipitation at the SGP CF may result from a local recycling of soil moisture 

mediated by evapotranspiration. First, it should be emphasized that most of the warm-season 

SGP precipitation falls at night [Wallace, 1975; Riley et al., 1987; Dai et al., 1999; Zhang et al., 

2008]. This nocturnal rainfall mainly derives from convective cells triggered by daytime heating 

of the sloping plains in the lee of the Rockies, that then propagate eastward over the SGP site 

[Jiang et al. 2006, Weaver and Nigam 2008, 2011]. From the large-scale studies of Ferguson and 

Wood [2011], Findell et al. [2011], and Taylor et al [2012], it is also reasonable to infer that little 

of this warm-season SGP precipitation results from locally triggered convection. Moreover, the 

regional studies of Lamb et al. [2012] and Ruiz-Barradas and Nigam [2013] argue for the 

dominance of horizontal over vertical moisture transports in precipitation formation at SGP. 
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At the CF site, correlations of the ARMBE observations of 1997-2008 warm-season 

precipitation rate P with local values of SMI10cm and EF are found to be consistent with such 

indications that there is only a modest amount of regional moisture recycling. For instance, 

correlations of daytime-average P with the corresponding SMI10cm and EF averages (R = 0.07 

and 0.05, respectively) are not statistically significant. An alternative hypothesis that nighttime 

precipitation at SGP CF may be fueled by local evapotranspiration also is not confirmed, since 

the correlation (R = 0.16 ) of daily (daytime + nighttime) averages of P with EF is not 

significant. Although the correlation of daily average P with SMI10cm   does yield a nominally 

significant value (R = 0.25), this likely reflects a tendency for increases in SMI10cm   to closely 

align with spikes in precipitation, as shown in Figure 4. Moreover, daily average P correlates 

negatively (R = -0.13)--although not significantly--with the surface latent heat flux LE, probably 

because precipitation tends to occur in environments with  high relative humidity, where the 

surface evaporative flux will be reduced.  

4.2 Other Interactions with Soil Moisture 

As noted by Betts [2004, 2009], soil moisture and surface evaporation impact other surface 

variables such as surface relative humidity RH and surface air temperature Ta which also are 

included in the ARMBE database. Their covariations relative to SMI10cm are depicted in Figures 

5b and 5c. Ta  correlates negatively with soil moisture (R = -0.38), and RH positively (R = 0.51). 

Because the surface saturation vapor pressure esat falls with decreasing Ta, RH = e/esat will tend 

to rise even in the absence of a soil-moisture-driven increase in the ambient surface water vapor 

pressure e.   

Soil moisture and covarying surface variables such as EF, Ta, and RH also can impact the 

vertical levels at which clouds form in the local atmospheric boundary layer. For example, 
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various surface variables at SGP correlate significantly with the lifting condensation level (LCL), 

the height where buoyant air parcels become saturated, and where clouds may begin to form.  

The LCL (in meters) can be approximated as a function of surface air temperature Ta in 

degrees Celsius and of the surface relative humidity percentage RH  [Lawrence 2005]: 

  LCL = (20 + Ta/5)*(100 - RH)    (11) 

The covariation of the derived LCL with SMI10cm is shown in Figure 6a. For a given surface 

temperature, (11) implies that an increase in relative humidity will result in a lower LCL. 

Because RH tends to increase with soil moisture (Figure 5b), the LCL also covaries inversely 

with SMI10cm (Figure 6a). While (11) ensures high correlation of the LCL with RH, the 

correlation of the LCL with SMI10cm (R = -0.52, I = -172.16) is also statistically significant. 

The observed cloud base level (CBL) may differ, of course, from the LCL estimate. 

Measurements of the CBL at the SGP site obtained from the Active Remote Sensing of Cloud 

Layers (ARSCL) retrievals based on radar data also are accessible from the ARM archives 

[Clothiaux et al., 2001]. In the present study, daytime CBL values less than 4 km are considered, 

in order to select for low clouds in a growing atmospheric boundary layer that may be influenced 

by local soil moisture through its control of RH. The covariation of this observed daytime low-

level CBL with SMI10cm at the CF site is shown in Figure 6b. The CBL also covaries inversely 

with SMI10cm, but with substantially less coherence (R = -0.26) than the derived LCL (R = -0.52); 

however, the sensitivity of the CBL to variations in soil moisture (I = -212.23) is substantially 

greater than that of the LCL (I = -172.16).  
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While soil moisture appears to influence the height of low-level clouds to some degree, it 

does not seem to impact the associated shortwave energetics comparably. For instance, the 

covariation of the daytime-average effective cloud albedo αc with SMI10cm   (R = 0.14) is not 

statistically significant at a 99-% confidence level.  Estimates of low-level cloud extent (ARMBE 

variable CLDLOW in Table 1) that presumably are related to RH   also do not correlate 

significantly with SMI10cm   (R = 0.06). 

On the other hand, SMI10cm   does exert a marginally significant influence on the surface 

upward shortwave flux SWup  (R = -0.19), which falls off as increasing soil moisture darkens the 

surface, thereby reducing the surface albedo αs (R = -0.26, figure not shown).  The upward 

surface longwave flux LWup correlates with SMI10cm  at substantially greater absolute magnitude 

than does  SWup  (R = -0.40 vs -0.19, figures not shown),  implying that the radiative influence of 

soil moisture on the lower atmosphere is stronger in the longwave than the shortwave. The 

correlation of  LWup  with SMI10cm also is similar to that displayed by the surface air temperature  

Ta  (R = -0.38, see Figure 5c), consistent with the observed high correlation of  LWup with Ta (R = 

0.98, figure not shown).   

4.3 Land-Feedback Dependencies 

From Figure 5, it is seen that as SMI10cm approaches zero, the surface evaporative fraction 

EF and relative humidity RH sharply decrease, while the surface air temperature Ta increases 

under such conditions of heightened moisture stress. It thus is expected that surface and lower 

atmospheric variables at the SGP CF site will be impacted more by local soil moisture when it is 

in drier states. Because of the influence of RH on the LCL and the CBL, boundary-layer cloud 

base levels may also be more strongly impacted under dry soil conditions.  
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Gross impacts of soil moisture amount on the land feedbacks can be investigated at SGP CF 

by distinguishing the time series of several relatively wet warm seasons (as defined by average 

precipitation, e.g. in the years 2002, 2004, 2007, and 2008), computing correlations R and 

sensitivities I of several near-surface variables with SMI10cm , and comparing these with the 

corresponding values obtained from the time series of several relatively dry warm seasons (e.g. 

in the years 1998, 2003, 2005, and 2006). As an example, the wet-year versus dry-year scatter 

plots of the CBL are shown in Figure 7. These wet-dry comparisons (summarized in Table 3) are 

in accord with the expected increases in coherence and sensitivity of the covariations of surface 

and lower-atmospheric variables with SMI10cm under drier soil conditions.  The wet-dry 

differences in correlations R for each variable in Table 3 are statistically significant at various 

confidence levels that range between about 75 % for RH to about 95 % for EF [cf. 

http://www.vassarstats.net/rdiff.html]. 

To more systematically isolate common moisture states in gradually drying soil, composites 

of SMI10cm  also can be obtained at the same day-lag subsequent to each 1997-2008 warm-season 

precipitation event (whenever nonzero hourly values of  P occur). As a way to quantify the 

associated relationships with surface and lower-atmospheric variables, the correlations of 

SMI10cm with the corresponding values of EF, RH, Ta, LCL, and CBL at the same day-lag can be 

computed, and then averaged over all the 1997-2008 warm-season precipitation events. The 

resulting composited correlations for lags up to 10 days are displayed at 2-day increments in 

Table 4. (Although lags up to 18 days after particular precipitation events are to be found in the 

ARMBE record, the sample size of the resulting composite is too small to yield meaningful 

statistics; hence, results are shown only up to 10 days’ lag, where the typical composite sample 

size is about N = 30.) 



20 

 

 From Table 4, the correlations of all variables are seen to increase after some initial drying 

of the soil. For example, the absolute correlations of the moisture-related variables EF, RH , LCL, 

and CBL peak at lags between 4 to 8 days, with an especially broad maximum being displayed 

by EF. Drying of the soil apparently enhances such hydrological land feedbacks only to a certain 

point, however, with gradual decoupling occurring upon further drying.  From the close 

relationship between the LCL and RH, it is not surprising that their maximum correlations with 

SMI10cm  coincide, on average, at a 6-day lag following a precipitation event.  Even though the 

CBL is less tightly coupled with RH, it also shows a maximum correlation at a 6-day lag. In 

contrast to the moisture-related variables, however, the correlation of surface air temperature Ta 

with SMI10cm, becomes increasingly negative as the soil continues to dry out after precipitation 

events, reaching a value R = - 0.33 at 10-days lag.  

 Another approach for identifying instances of relatively strong land feedback is to isolate 

daytime cases when boundary-layer cumulus clouds grow from surface convection, since then 

the opportunity to discern the impact of the surface on low–level clouds may be better. For 

example, both forced (“thin”) and active (“thick”) shallow cumulus (SHCU) clouds form at the 

SGP site when moist thermal updrafts driven by local surface sensible heating are present [Zhang 

and Klein, 2013]. By convolving indices of the observed occurrences of thin or thick SHCU 

clouds [personal communication, Y. Zhang], with the entire 1997-2008 warm-season record of 

hourly CBL data  at SGP, daytime-average values of the CBL for both types of SHCU clouds can 

be computed.  

Scatter plots of the covariation of the daytime averages of thin-or thick-SHCU CBL with RH 

and SMI10cm are shown in Figure 8. At the SGP CF site, incidences of SHCU clouds are sporadic, 
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with a total of only about 70 occurrences during the 1997-2008 warm seasons; of these, 43 are 

spaced at least 5 days apart, and so can be treated as statistically independent events.  A 

correlation R then must be greater than about 0.42 in absolute value to be regarded as statistically 

significant at a 99 % confidence level. The correlation of SHCU CBL with RH ( R = -0.54) easily 

passes this threshold, while the correlation with SMI10cm  (R = -0.31) does not. 

Like the all-cloud CBL of Figure 6b, the SHCU CBL varies inversely with both RH and 

SMI10cm ; but the daytime-average covariations of the SHCU CBL with RH (R = -0.54—Figure 

8a) and with SMI10cm (R = -0.31—Figure 8b) are more coherent than the corresponding 

correlations of the all-cloud CBL with RH and SMI10cm (R = -0.33—figure not shown, and -

0.26—Figure 6b, respectively). This result confirms the supposition that the influence of the 

surface on low-level clouds is stronger when they are known to originate from surface-based 

convection.  (It should also be noted that the daytime-average correlation of the SHCU CBL with 

RH  is considerably less than what is obtained from hourly samples--see Figure 14 of Zhang and 

Klein [2013].)  

5.  Discussion  

In this study, the ARMBE and supplemental field observations make possible a fairly 

comprehensive investigation of local warm-season land-atmosphere interactions at the SGP CF 

site. The energetic forcing of the atmosphere on the surface is seen to be substantial, and to 

largely determine the land’s response, in the form of turbulent heat fluxes. In contrast, the land’s 

energetic feedbacks on the atmosphere are comparatively weak. For example, the impact of 10-

cm soil moisture on surface and cloud shortwave radiant fluxes appears to be only marginally 
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significant. However, because of its influence on surface temperature, soil moisture does seem to 

have a greater impact on the upward longwave flux.  

At the SGP CF site, the hydrological forcing of the land by precipitation also predominates 

over the land’s moist feedbacks, with little evidence that the SGP CF soil moisture triggers much 

precipitation via local moisture recycling. This outcome is consistent with the known remote 

origins of most of the precipitation that falls at SGP, as well as the implications of several other 

observationally based studies (e.g. Ferguson and Wood [2011], Lamb et al. [2012], Taylor et al. 

[2012], Ruiz-Barradas and Nigam [2013]). Much of the time also, the surface evaporative 

fraction EF exhibits a fairly weak dependence on the 10-cm soil moisture index SMI10cm . 

However, as the soil begins to dry out after a precipitation event, EF couples more tightly with 

soil moisture. Similar effects are also observed in surface relative humidity and temperature, as 

well as in the heights of boundary-layer cloud bases. On days when shallow cumulus clouds are 

initiated, presumably by thermal updrafts associated with surface sensible heating, the coupling 

with soil moisture also grows stronger.  

The observationally based perspectives cited above would appear to call into question the 

GLACE-1 model ensemble mean result, which implied that an especially strong coupling of 

local soil moisture and precipitation prevails over the central U.S. under present-day summer 

conditions.  The GLACE-1 models therefore may have substantially overestimated the strength 

of this coupling.  Nevertheless, because the central U.S. is situated in a moisture-stressed 

transition zone with potential for strong land-atmosphere coupling (e.g. Ferguson et al. [2012]), 

it may still be a “hot spot” relative to many other parts of the world.  
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Moreover, if the local climatic regime were to shift to generally drier conditions (e.g. as a 

result of future greenhouse-induced warming), the present study implies that these land 

feedbacks would become stronger, possibly also inducing more frequent or intense heat waves 

(Seneviratne et al. [2006], Fischer et al. [2007], Jaeger and Seneviratne [2011], Lorenz et 

al.[2010, 2012],  Miralles et al. [2012],  Orth and Seneviratne [2012]). Such a prospect also 

seems consistent with land-atmosphere interactions in the idealized model of Lintner et al. 

[2013], and in the global-warming simulations analyzed by Dirmeyer et al. [2012, 2013].  

6. Future Investigations 

The seeming divergence between the inferences drawn from observations versus simulations 

begs the question ‘how might today’s global climate models be made more realistic in their 

representation of land-atmosphere coupling mechanisms, such as are pertinent to the U.S. Great 

Plains?’ 

For seasonal climate prediction, part of the answer may entail using precipitation 

observations to initialize model soil moisture. For example, in the GLACE Phase 2 (GLACE-2) 

numerical experiments where this protocol was adopted, the model ensemble-mean maximum in 

precipitation forecast skill was located in the U.S. Northern Great Plains and Mountain West, 

rather than in the central U.S. [Koster et al., 2011]. This result also appears to be in better 

agreement with the Findell et al. [2011] observationally based estimates of linkages between 

surface evaporation and afternoon convective precipitation. 

On the other hand, Klein et al. [2006] showed that even when soil moisture was realistically 

initialized in a participating GLACE model, its simulation inadequately captured the nocturnal 
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precipitation associated with eastward propagating convective cells in the lee of the Rockies, 

resulting in a large warm/dry model bias over the SGP region. This is a general failing of coarse-

resolution global models [e.g. Lee et al. ,2007]. 

A parameterization-focused evaluation of today’s global climate model simulations of 

cloud-convective processes and their relationship to land-atmosphere coupling over the central 

U.S. would thus seem to be a high priority.  It is therefore fortuitous that climate model 

behaviors now can be evaluated in a more detailed fashion than was generally possible in the 

GLACE-1 era. For instance, it is currently feasible to initialize a global atmospheric climate 

model realistically from reanalyses, to run it in weather-prediction mode, and to compare its 

forecasts with local, high-frequency observations as a means of evaluating convective or other 

atmospheric model parameterizations (e.g. see the SGP-centric studies by Phillips et al. [2004], 

Xie et al. [2004], Williamson et al. [2005], as well as the multi-model experiment described by 

Williams et al. [2013]). If such a model’s soil moisture also were initialized from observed 

precipitation, as in the GLACE-2 experiment, forecast deviations from the observed SGP land-

atmosphere covariances (such as are described in the present study), could potentially highlight 

flaws in the model’s land-surface or boundary-layer parameterizations. This diagnosis, in turn, 

would motivate and guide improvements in the associated model representations [e.g. Lorenz et 

al., 2012]. (For observed land-atmosphere covariance relationships to provide meaningful 

evaluation criteria for the typical global climate model at 50-200 kilometer grid scale, soil 

moisture and available surface and boundary-layer variables from SGP sites surrounding the CF 

probably would need to be utilized as well.) 
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It should also be noted that nocturnal, convective cells propagating eastward from the 

Rockies recently have been more successfully simulated by high-resolution mesoscale models 

that include complex cloud-convection representations [Tao et al., 2013] or by GCMs with 

embedded cloud-resolving models [Pritchard et al.[2011]). In their observational study of 

continental convection, Taylor et al. [2012] also posited an important role for mesoscale 

circulations in triggering continental convection over drier soils. Improved simulation of warm-

season land-atmosphere interactions thus may depend on properly representing the mesoscale 

effects of convection and its dependence on surface processes.  

In this respect, the mesoscale testbed implemented by Santanello et al. [2009, 2011a,b] 

offers a promising diagnostic protocol. They have conducted process studies of SGP land-

atmosphere interactions by employing a regional atmospheric mesoscale model that is coupled to 

a suite of different boundary layer and land surface schemes, and that is evaluated locally against 

ARM observations (e.g. at the CF and at another SGP site in southwest Kansas site). By 

employing thermodynamic mixing diagrams [Betts, 1992] to express the covariation of observed 

atmospheric potential temperature and moisture in the vertical column situated over a 1x1-

kilometer model grid box, Santanello et al. have identified multiple pathways by which the local 

land and atmosphere interact on a diurnal time scale.  They also have developed metrics to 

quantify the local land-atmosphere coupling strength associated with each model configuration, 

and to evaluate these against the corresponding observationally based metrics. 

Thus, even though land-atmosphere coupling appears to entail more complex interactions 

than were initially recognized, there are new tools at hand to diagnose and evaluate the details of 

these interactions. It is likely, nonetheless, that an accurate identification and effective correction 
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of the sources of model errors in representing different facets of land-atmosphere coupling will 

continue to prove challenging. 
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Notation 

αc Effective short-wave cloud albedo, dimensionless 
αs Land surface albedo, dimensionless 
γ Slope of least-squares regression line, variable units 
σ Multi-year standard deviation 
B Bowen ratio, dimensionless 
CBL Cloud base level, m 
CLDLOW Low-level cloud cover, % 
E Surface evapotranspiration, mm hr-1 
Ep Potential evaporation, mm hr-1 
EF Evaporative Fraction, dimensionless 
e Water vapor pressure, Pa 
esat Water vapor saturation pressure, Pa 
G Ground heat flux, W m-2 
H Surface sensible heat flux, W m-2 
I Sensitivity index, various units 
LE Surface latent heat flux, W m-2 
LCL Lifting Condensation Level, m 
LWdn Surface downward long-wave flux, W m-2 
LWup Surface downward long-wave flux, W m-2 
LWnet Surface net long-wave flux, W m-2 
M Number of non-missing hourly samples per day 
N Estimated number of statistically independent samples 
P Precipitation rate, mm hr-1 
Pday Daytime precipitation rate, mm hr-1 
R Temporal correlation coefficient, dimensionless 
Rnet Surface net total radiation, W m-2 
RH Surface relative humidity, % 
SMI Soil Moisture Index, dimensionless 
SMI10cm SMI calculated from moisture in the top 10 cm of soil 
SWdn Surface downward short-wave flux, W m-2 
SWdn clr Surface clear-sky downward short-wave flux, W m-2 
SWdn TOA Downward short-wave flux at top of atmosphere, W m-2 
SWup Surface upward short-wave flux, W m-2 
SWnet Surface net short-wave flux, W m-2 
Ta Surface air temperature, K 
Ts Surface skin temperature, K 
W Soil moisture, kg m-2 
Wc Local critical value of soil moisture, kg m-2 
Wwilt Local value of soil moisture unreachable by vegetation roots,  kg m-2 
Wmax Maximum multi-year value of soil moisture, kg m-2 
Wmin Minimum multi-year value of soil moisture, kg m-2 
x Arbitrary “independent” variable, diverse units 
y  Arbitrary “dependent” variable, diverse units 
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Tables 

 

Table 1: Selected ARM Best Estimate (ARMBE—cf. Xie et al. [2010]) and other ARM-
observed variables considered in this study (the latter denoted by shading), as well as their 
respective symbolic notations, measuring instruments, estimated measurement root mean square 
error (RMSE) in the units of the observed variable, and pertinent references. All variables are 
observed at hourly frequencies during the 1997-2008 May-August warm seasons at the Central 
Facility (CF) of the Atmospheric Radiation Measurement (ARM) U.S. Southern Great Plains 
Site near Lamont, Oklahoma. See also http://www.arm.gov/data/vaps/armbe for further 
instrumental details pertaining to the ARMBE data sets. 
 

 
 
 

  

Variable Symbol Instruments RMSE  Reference 

Cloud base level  CBL Millimeter radar, lidar 50 m Clothiaux et al. [2001] 

Low-level cloud cover CLDLOW Millimeter radar, total sky 
imager 10 % Clothiaux et al. [2001],  

Morris [2005] 

Surface sensible heat flux  H 
Energy Balance Bowen 
Ratio (EBBR): net 
radiometer; anemometer 
& wind vane; temperature, 
relative humidity, soil 
moisture and heat flux 
probes 

30 W m-2 

Cook [2011] 
Surface latent heat flux  LE   20 W m-2 

Surface downward 
longwave flux LWdn Pyrgeometer 10 W m-2 Long and Shi [2006, 2008] 

 
Surface upward long-
wave flux LWup Pyrgeometer 5 W m-2 Long and Shi [2006, 2008] 

 

Precipitation rate  P Tipping bucket rain gauge 0.02 mm hr-1 Ritsche [2008] 

Surface relative humidity  RH Temperature/relative 
humidity thermistor 1 % Ritsche [2008] 

Surface clear-sky down-
ward shortwave flux SWdn clr Pyranometer-derived 20 W m-2 Long and Shi [2006, 2008] 

 
Surface downward 
shortwave flux SWdn Pyranometer 20 W m-2 Long and Shi [2006, 2008] 
Surface upward  
shortwave flux  SWup Pyranometer 5 W m-2 Long and Shi [2006, 2008] 

Surface air temperature  Ta  
Temperature/relative 
humidity thermistor 0.4 K Ritsche [2008] 

Soil moisture W Heat-dissipation matric 
potential sensor 2.5  kg m-2 

Schneider et al.[2003], 
Bond[2005] 
 

http://www.arm.gov/data/vaps/armbe
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Table 2: Summary of correlations R and sensitivities I for surface radiant and turbulent fluxes,  
all with respect to the effective shortwave cloud albedo αc . 
 

Variable Correlation R Sensitivity I 

SWnet -0.65 - 54.17 

LWnet 0.71 14.88 

Rnet -0.55 -37.76 

LE -0.38 -22.13 

H -0.29 -10.35 
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Table 3: Listing of correlation coefficients R and sensitivity indices I of variables covarying with 
respect to 10-cm soil moisture index SMI10cm . The values of SMI10cm  and of the covarying 
variables are drawn from the warm seasons of four relatively wet years (2002, 2004, 2007, and 
2008), or of four relatively dry years (1998, 2003, 2005, and 2006). See the text for further 
details. 
 

Variable R, I in wet years R, I in dry years 

EF 0.33, 0.04 0.57, 0.07 

RH 0.42, 4.55 0.51, 6.48 

Ta -0.27, -1.12 -0.43, -2.05 

LCL -0.43, -120.74 -0.52, -178.31 

CBL -0.14, -104.60 -0.27, -222.05 
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Table 4: Composite-average correlations R of surface or lower atmospheric variables vs 10-cm 
soil moisture index SMI10cm , as a function of the number of days lagging (“ld”) precipitation 
events during the 1997-2008 warm seasons at the SGP Central Facility site. Each variable’s 
maximum correlation with SMI10cm over the range of lagdays 2-10 also is denoted by boldface 
font. 
 

Variable R (ld2) R (ld4) R (ld6) R (ld8) R (ld10) 

EF 0.45 0.57 0.47 0.55 0.30 

RH 0.42 0.43 0.53 0.29 0.24 

Ts -0.20 -0.26 -0.27 -0.25 -0.33 

LCL -0.44 -0.45 -0.52 -0.29 -0.25 

CBL -0.12 -0.23 -0.35 -0.11 -0.05 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



38 

 

Figure Captions 
 
Figure 1: Scatter plots of daily averages of SWnet (in W m-2) versus effective cloud albedo αc  are 
shown in (a), and of the surface total net radiation Rnet  (in W m-2) versus αc  in (b) for the 1997-
2008 May-August warm seasons at the SGP site. The least-squares regression line, as well as the 
correlation coefficient R and sensitivity index I also are shown in each plot (see text for details). 
 
Figure 2: As in Figure 1, except for the surface net long-wave radiation LWnet (in W m-2) versus 
effective cloud albedo αc in (a), and LWnet versus surface relative humidity RH (in %) in (b). 
 
Figure 3: As in Figure 1, except for the surface latent heat flux LE (in W m-2) versus effective 
cloud  albedo αc  in (a) and the surface sensible heat flux H versus the difference LE – Rnet  of the 
surface latent heat flux and the net radiation (all in Wm-2 ) in (b). 

Figure 4: Warm-season hourly time series of SGP precipitation rate P (mm hr-1 in blue ) versus 
soil moisture offset ∆W = (W10cm – 25) kg m-2   for the top 10 cm of soil (in green) are shown for 
the anomalously dry year 2006 in (a), and for the anomalously wet year 2007 in (b). 

Figure 5: As in Figure 1, except for the surface evaporative fraction EF in (a), the surface                        
relative humidity RH in (b), and the surface air temperature Ta in (c), all with respect to the 10-
cm soil moisture index SMI10cm. 

Figure 6: As in Figure 1, except for the derived lifting condensation level LCL (in meters) in (a), 
and the observed daytime-average cloud base level CBL for those clouds with bases below 4 km 
in (b), both with respect to the10-cm soil moisture index SMI10cm.  

Figure 7: As in Figure 1, except for the observed cloud base level CBL for those clouds with 
bases below 4 km versus the 10-cm soil moisture index SMI10cm  for (a) the wet warm seasons of 
2002,2004, 2007,and 2008, and (b) for the dry warm seasons of 1998, 2003, 2005, and 2006.  

Figure 8: As in Figure 1, except for the observed daytime-average cloud base level CBL during  
occurrences of forced (“thin”) or active (“thick”) shallow cumulus clouds versus surface relative   
humidity RH in (a), and versus the 10-cm soil moisture index SMI10cm in (b). See the text for  
further details. 
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Figure 1: Scatter plots of daily averages of SWnet (in W m-2) versus effective cloud albedo αc  are 
shown in (a), and of the surface total net radiation Rnet  (in W m-2) versus αc  in (b) for the 1997-
2008 May-August warm seasons at the SGP site. The least-squares regression line, as well as the 
correlation coefficient R and sensitivity index I also are shown in each plot (see text for details). 

(a) 

 

(b) 
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Figure 2: As in Figure 1, except for the surface net long-wave radiation LWnet (in W m-2) versus 
effective cloud albedo αc in (a), and LWnet versus surface relative humidity RH (in %) in (b). 

 

(a) 

(b) 
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Figure 3: As in Figure 1, except for the surface latent heat flux LE (in W m-2) versus effective 
cloud albedo αc  in (a) and the surface sensible heat flux H versus the difference LE – Rnet  of the 
surface latent heat flux and the net radiation (all in Wm-2 ) in (b). 

(a) 

(b) 
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Figure 4: Warm-season hourly time series of SGP precipitation rate P (mm hr-1 in blue ) versus 
soil moisture offset ∆W = (W10cm – 25) kg m-2   for the top 10 cm of soil (in green) are shown for 
the anomalously dry year 2006 in (a), and for the anomalously wet year 2007 in (b). 

(a) 

(b) 
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Figure 5: As in Figure 1, except for the surface evaporative fraction EF in (a), the surface 
relative humidity RH in (b), and the surface air temperature Ta in (c), all with respect to the 10-
cm soil moisture index SMI10cm. 

(a) 

(b) 

(c) 
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Figure 6: As in Figure 1, except for the derived lifting condensation level LCL (in meters) in (a), 
and the observed daytime-average cloud base level CBL for those clouds with bases below 4 km 
in (b), both with respect to the10-cm soil moisture index SMI10cm.  

 

(a) 

(b) 
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Figure 7: As in Figure 1, except for the observed cloud base level CBL for those clouds with 
bases below 4 km versus the 10-cm soil moisture index SMI10cm  for (a) the wet warm seasons of 
2002,2004, 2007,and 2008, and (b) for the dry warm seasons of 1998, 2003, 2005, and 2006.  

(a) 

(b) 
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Figure 8: As in Figure 1, except for the observed daytime-average cloud base level CBL during  
occurrences of forced (“thin”) or active (“thick”) shallow cumulus clouds versus surface relative  
humidity RH in (a), and versus the 10-cm soil moisture index SMI10cm in (b). See the text for  
further details. 

(a) 

(b) 


